Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis: inactivation of its kinase activity toward p53.

نویسندگان

  • Jinzhao Wang
  • Navjotsingh Pabla
  • Cong-Yi Wang
  • Weixin Wang
  • Patricia V Schoenlein
  • Zheng Dong
چکیده

Cisplatin induces renal cell injury and death, resulting in nephrotoxicity that limits its use in cancer therapy. Using cell culture models, recent work has suggested the involvement of p53 in renal cell apoptosis during cisplatin treatment. However, the signals upstream of p53 remain elusive. ATM and ATR are critical regulators of p53 under various conditions of DNA damage. Here, we show that ATM, and not ATR, was proteolytically cleaved into specific fragments of approximately 210 and 150 kDa during cisplatin-induced tubular cell apoptosis. ATM cleavage was paralleled by the development of apoptosis. VAD, a broad-spectrum inhibitor of caspases, attenuated the cleavage of ATM, whereas the inhibitors of specific caspases were less effective. In caspase-3-deficient MCF-7 cells, ATM was cleaved, releasing the 210- but not the 150-kDa fragment. Recombinant caspase-3 was much more effective than caspase-7 in cleaving ATM that was immunoprecipitated from cell lysates. During cisplatin incubation, VAD protected ATM and enhanced p53 phosphorylation. In vitro assay of protein kinase activity further showed that ATM immunoprecipitated from cisplatin-treated cells had significantly lower kinase activity toward p53 than that from control cells. Importantly, the protein kinase activity was restored in ATM that was protected by VAD during cisplatin incubation. ATM deficiency sensitized the cells to cisplatin-induced apoptosis, suggesting a cytoprotective role of ATM in this experimental model. Thus proteolysis of ATM by caspases may inactivate this regulatory molecule to facilitate the progression of apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity.

Tubular damage by cisplatin leads to acute renal failure, which limits its use in cancer therapy. In tubular cells, a primary target for cisplatin is presumably the genomic DNA. However, the pathway relaying the signals of DNA damage to tubular cell death is unclear. In response to DNA damage, the tumor suppressor gene p53 is induced and is implicated in subsequent DNA repair and cell death by ...

متن کامل

Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways.

The chemotherapeutic cisplatin causes renal dysfunction and renal proximal tubular cell (RPTC) apoptosis. The goal of these studies was to examine the role of p53, caspase 3, 8, and 9, and mitochondria in the signaling of cisplatin-induced apoptosis. Cisplatin (50 microM) produced time-dependent apoptosis in RPTCs, causing cell shrinkage, a 50-fold increase in caspase 3 activity, a 4-fold incre...

متن کامل

The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 291 6  شماره 

صفحات  -

تاریخ انتشار 2006